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A rigorous formulation of the unsteady coupled electromechanical problem of the interaction of a massive electrode with 
a multilayered piexoelectric medium is given, and a general formulation of a method of solving it is proposed. As an 
example the problem for ,a massive strip electrode, which interacts with a single-layer, double-layer and triple-layer piexoelectric 
medium with unsteady loading is considered. The effect of the electroelastic properties of different materials (classes 6 mm of 
the hexagonal system) on the displacement of the electrode and the potential is pointed out. 0 1998 Elsevier Science Ltd. 
All rights reserved. 

The majority of investigations of the dynamic processes in electroelastic semi-bounded media are carried 
out on the assumption that the wave fields vary harmonically with time. However, in practice, we are 
particularly interested in developing methods for solving such problems in the case of unsteady electric 
and mechanical loadling of piezoelectric media, taking their multilayered form and the electrode mass 
into account. 

1. FORMULATION OF THE PROBLEM 

Consider a multilayered piezoelectric semi-bounded medium, occupying the region -H L z s 0, 
*=Gn,yS+m,H=2(hr+... + hN), where hi is the half-thickness of the ith layer. Unsteady excitation 
of the medium occurs via a single electrode of mass m with a plane base S, which is modelled by a rigid 
punch. There is complete adhesion in the contact area S. The mechanical load, which varies in a specified 
way with time t, which acts on the electrode, reduced to the centre of mass with coordinates (0, 0, s), 
is split into a force component P(t) = {PI, P2, P3} and a moment M(f) = {Ml,M2,M3}. Electric excitation 
is provided by an electric field E(t) or a current Z(t) which vary in a specified way. The system is at rest 
at the initial instant of time. The displacements of points of the electrode u(‘)(t) = {z& ui, u”,} are defined 
in the form u(O) = u + [‘p x r], where u(t) = {ur, u2, us}, ul, u2, u3 are the horizontal and vertical 
components of the dlisplacement of the centre of mass of the electrode, cp = {cpI, R, (~3) is the vector 
of the angles of rotation about the centre of mass, and r = {x1, x2, -s} is the radius vector of points of 
the electrode base. 

The equations of :motion of the solid are described by the equations 

mii=P-Q, J@=M-R 

where the vectors Q and R are the forces and moments which arise in the contact area between the 
solid and the medium, J is a matrix, only the diagonal elements Jt, J2 and J3 of which are non-zero, and 
Ji are the principal moments of inertia about the xi axes; a dot denotes a partial derivative with respect 
to time t. 

The equations of Imotion of a multilayered piezoelectric medium [l, 21 include the linear equations 
of state, the equations of motion in stresses, the equations of electrostatics and the Cauchy relations 
for each layer 

oij = C@k, -e&, di = eiklskl + ~ik Ek 
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(1.1) 

sk, =(awk iax, +aw, iaxr)/2, Ed =-*/ax, 

In these equations, for simplicity, we have omitted the superscript m = 1, 2, . . . , IV, representing 
the number of the corresponding layer, fl are the components of the mechanical-stress tensor, ~~7 are 
the components of the strain tensor, E i, v+ t are the components of the electric field and electric induction 
vectors, fl are the components of the displacement vector, r$” is the electric potential, c$ = c$ are 
the components of the elasticity constants vector, measured in a constant electric field, ez are the 
components of the piezomoduli tensors, I$ = care the components of the permittivity tensor for 
constant deformations and pm is the density of the material. The properties of the material-constants 
tensor are described in [l] (i, j, k, 1= 1-3, and summation is carried out over repeated subscripts). 

Eliminating all the variables apart from Wi and \y from (l.l), we obtain a system of second-order partial 
differential equations 

cvua2w, I ax,axj + euja2y I ax$x, -Phi = 0 

eiwa2wk 1 ax,ax, - Eika2W I axki9xi = 0 (l-2) 

Henceforth, in addition to numerical indexation of the coordinate axes and vectors, which is necessary 
for the tensor description, we will also use the traditional notation x = {xi, x2, xs} = {x, y, 21. 

We need to add the initial and boundary conditions of the problem to Eqs (1.2). We will assume the 
initial values to be zero. The boundary conditions for the mechanical variables are formulated in the 
same way as the conditions in the problems in the theory of elasticity. 

The following contact condition must be satisfied on the surface of the medium z = 0 

There are no stresses q = (0~3,023, CJ~~} = {ql, q2, q3} outside the contact area S 

q(x,y,O= a (XlY) 65 s 
The electrical conditions on the medium surface depend on the type of excitation. 
1. When oscillations are excited by an electric field from a voltage generator on a surface electrode 

connected to it, the known value of the potential 

w = WOW, (-GY) ES 
is specified. 

2. If the surface electrode is supplied with a current of known magnitude 1(t), the unknown value of 
the potential w = ~a@) is specified on it, and this is determined from the condition 

The total charge on the surface of the electrode O3 is defined in terms of the normal component of 
the electric-induction vector 

4 = 4 Id,& 
s 

3. If no electrical energy is supplied to the electrode and none is taken from it, the value of vo(t) is 
found from the condition of conservation of charge 

4 =o, (x,y)eS 

There are no free charges on the non-electrode part of the surface, i.e. 

3=0, (x*y)4ES 

At the interface between the layers the conditions for the mechanical displacements and the electric 
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potential to be equal, and also the conditions for the corresponding components of the elastic stresses 
and of the normal components of the electric induction to be equal must be satisfied 

wm=w m+l , v”=\y m+t, m=l 2 , 1..., N-l 

Oj3 m =<Ty, j=l-3, dy c&J’+‘, ~=-2gh, 
i=l 

For a packet of piezoelectric layers, the lower face of which is clamped and metallized, the following 
conditions must be satisfied 

wN(x,y,-H,f)=O, ~N(X,y,-H,t)=O 

For a multilaye:red medium, coupled to a half-space, we need to add the conditions for the 
displacements and the potential to die away as z + 00 

WN(X,y,Z,t) --) 0, #%,y,z,r) --) 0 

2. GOVERNING EQUATIONS 

Henceforth we will introduce augmented vectors w = {wt, w2, w3, ~1, q = {ql, q2, q3, d3}, u” = 
{UT, u$ I.& yo}. After applying integral Laplace and Fourier transformations with respect to the variables 
t and x, y and taking the initial and boundary conditions of the problem into account, we can reduce 
Eqs (1.2) to a system of four integral equations of the first kind 

IIk(x-5,y-Cp)q(S,r,p)dSdr=u”(x,y,p), (x,y)~S 
s 

k(x, y, p) = -$ /I KM, B, 0, p)e-i’u+pY’dM 
ai=2 

(2.1) 

with respect to the unknown vector q, where 01, g are the parameters of the Fourier transformation 
andp is the parameter of the Laplace transformation. 

The matrix function K(a, j3, z, p) is determined by the type of medium, and for multi-layered media 
has the same form as in the corresponding problems of steady-state oscillations with the oscillation 
frequency o replaced by ip. 

For a piezoelectric medium of class 6 mm of the hexagonal system, the matrix K has the structure 

K= 

~~hf, +P2N ap(M, -N) iaM iaM 

$(M,- N) p2h4, +a2N if3M2 i/3M 

-iaK, -ipK, K2 K3 

-iaR, -@R, R2 R3 

5 

i 
(2.2) 

Note that when 2: = 0 we have KI = M2, RI = M3, K3 
the parameters h, 03 = ip(h2 

= R2, where Mi, Ki, Rip N are even functions of 
= a2 + p2) and are regular on the real axis everywhere with the exception 

ofthepolesh= &pk(k= 1,2,... , n), which are the same for all types of functions. The contours of 
integration of o1 and o2 are chosen in accordance with the principle of limiting absorption [3]. With 
these properties of the kernels, system (2.1) is uniquely solvable in the space LP in the region S(p > 1). 
The criteria of uniqueness are defined in [3,4]. 

We will denote by qk {q:, q:, 45, $(3} (k = 1, . . . ,7) the solutions of the system of integral equations 
(2.1) for the right-hand side, when only one of the components ~1, ~2, us, cpr (~2, (~3, ~0 is non-zero, and 
has a single value. The corresponding forces and moments, which arise in the contact area between 
the electrode and the medium, and the total charges on the electrode are given by the following formulae 
(integration is over the contact area S) 
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R: = jj (& + &MS, R; = jj <-4:s - q$x, )dS, R; = jj (q;x, - q:x, Ids 

Qf = jjqfd.S, i = 1,2,3, 0; = jld!d& (2.3) 

Note that qf, Qki, Rf, dg, 0: are functions of the parameter p = -iw, which is an important feature 
of the problems considered. 

We will write the equations of motion of the punch in Laplace transforms and taking (2.3) into account 
in the form 

Jip2qi=Mi- iR,!u,- iRf’pk_3-woRy, i=l-3 
k=l k=4 

(2.4) 

Depending on the type of electric excitation, in Eqs (2.4) v/ is a specified quantity in the case when 
the electric boundary conditions 1 are used, or is unknown (conditions 2 and 3). In the first case system 
(2.4) contains six unknowns Ui and qti In the second case, we must add to the equations 

I(P) = -p i D&k + ; D;q,_, + \yoD; 
k=l k=4 

(2.5) 

Finally, we obtain a system of seven equations in terms of seven unknowns Ui, Cpi, \yo. 

3. CONSTRUCTION OF GREEN’S MATRIX FUNCTION FOR 
A MULTILAYERED MEDIUM 

Suppose the medium is a packet of N rigidly coupled electroelastic layers of thickness H = 2(hi + 
. . . + hN) With rigidly clamped lower face and occupying the region H s z =G 0, - G x, y d += 

We will introduce a local system of coordinates for each layer 
k-l 

Zk =2+2Chi+hk, k=l,2,...,N 
i=l 

We will formally separate the layers. Then, the displacement of points of the kth layer wf (i = l-3) 
and the electric potential wkq = v will be given by the expression 

Wk(Zk) = B+(Zk)Qk_, +B_(Zk)Q,, k = LX...,N (3.1) 

where Qk = {QI, Q2, Q3, D 3 1 is a vector whose components are the forces and electric induction, 
characterizing the interaction between the layers, and Qo is a vector specified on the surface of the 
medium. 

The matrices B&k) are constructed by the method of eigenvector functions [5] and have a structure 
of the form (2.2), described in detail in [6]. The elements of these matrices contain elastic, piezoelectric 
and dielectric moduli of the kth layer and are given for specific types of media in [6-g]. It is preferable 
to use this representation for each layer (3.1) since there are no growing exponential components in 
the solution for a multilayered medium, which enables us to investigate media with an arbitrary number 
of layers, each of which may possess complex physical and mechanical properties. 

We will write the conditions for the layers to be joined 

Wk(-hk)=Wk+‘(hk+l), k=l,2,...,N-1 

and the condition on the lower face of the packet of layers 

(3.2) 

(3.3) wN(-h,,,) = 0 

From (3.2) we have the recurrence relation 
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B+(-h, )Qk_, + W_(-h,) - B+(hk+, )lQk = B-h+, )Q~+I (3.4) 

From (3.3) we determine 

QN = -IX’ C-h, )B+ (-hi )QN-, (35) 

Using (3.4) and (3.5) we can express Qk in terms of the surface load Qa 

Qk =(-l)‘i~~F,~‘B+(-h,)Q,. k=1,2,...,N; FN =B_(-h,) 

F,: =B_(-h,)-B+(h,+,)+B_(h,+,)F,-f,B+(-h,,,), k=1,2,...,N-1 

As a result, the displacements of points of the multilayered medium and the electric potential will 
be given by the expression 

k-l 
~dz)=K(a,f3,z,p)Q,,, z=zk_2chi_hk, k=l,2,...,N 

i=l 

I~(a,p,Z,p)=(-l)k-l[B+(Zk)-B_(Zk)F~’B+(-hk)] fp$%+(-hi) 
i=k-I 

The solution of the problem of a multilayered medium rigidly coupled to a half-space is easily obtained 
by allowing the thickness of the lower layer to tend to infinity, and replacing here the system of 
coordinates z* = qy - hN Taking the limit we obtain 

F,” = 0, FN_I = B-(-h,_,) -B;(O) 

F,: =B_(-h,)-B+(h,+,)+B_(h,+,)F,-f,B+(-h,,,), k=l,2,...,N-2 
k-l 

z=zk-2Chi-hk, k=l,2,...,N-1; z=z*-ZNi’hi, k=N 
i=l i=l 

4. SOLUTION OF THE CONTACT PROBLEM 

To find u”, cp, ~0 we need to find the functionals Rk, Q, II:, which are related to the fundamental 
solutions of the system of integral equations (2.1) $ by relations (2.3). The solutions $ = {ql, q2, q3, 
4) are constructed by the method of fictitious absorption, which enables us to take into account 
analytically all the singularities on the boundary of the contact area S. 

According to the method of fictitious absorption, the solution of the system of integral equations 
(2.1) Kq = f will be sought in the form 

q(&y)=P&Y)+P*(x*Y) (4.1) 

The unknown function p*(x, y) is chosen from the condition for the following functionals to be equal 

Vq(+a,,kP1)= Vpo(+a,,*pI), pi =a; +P:, ml= LZ...,n 

Here 

V(a,P)f(x,y) = +jjf(x,y)ei(~+P’bdy 
-00 

V-’ (x, y)F(a, p) = ‘I” j F(a, p)e-i(ar+By)dad@ 
-00 

and *pm is a pole, !which is the same for all the elements of the matrix K(a$). 
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The vector function p&y) contains, by its construction, a certain arbitrariness, which can be eliminat- 
ed in the final solution of the whole problem [4]. 

To fix our ideas, suppose S is a rectangle with sides 2u and 26 ( In 1 d a, Iy 1 d b). We can then take 
as p*(x, y) the Dirac delta function with carriers at the points xi and yi 

2n 2n 

P*(‘?Y)= C. Ccij&X-Xi*y-yj) 
i=l j=l 

where Ci. = 
points which 

{cl cz cz cf} are unknown constants to be determined, andxj = 
d&d! thYk rkgion Sa (0 c x G a, 0 d y c b) into equal rectangles. 

kx;,yj = kyy, x!, y! are 

We will represent the matrix K(a, j3) in the form 

K(a, P) = SO% P) I&a, P); D(o, P) = E + I’Io<a, B), a2 + P2 = h2 (4.2) 

where E is the identity matrix, II(a, fl) is a matrix whose elements contain all the singularities of the 
elements of the matrix K(a, g), and S(a, p) has as its elements functions which decrease at infinity as 
h + 00, and which contain no singularities on the real axis [4]. 

We will introduce a new unknown vector, namely, the function t(x, y), by the relation 

which corresponds to 

v@$)t(x. Y) = Na$)W. B)po(x,y) (4.3) 

T(a. B) = n(a, B>Po<a. B) 

As a result, the system of integral equations (2.1), after substituting (4.1) and (4.2) and taking (4.3) 
into account, can be transformed to the form 

k&y) = 

g(x,y)=f(x,y)-~~~k(x-5,y-~)p.(5,~)mPr 
s 

For a rectangular contact area 

2n 2n 

g(xtY)=f(xvy)-Z Ck(x-xi,Y-Yj)C~ 
i=l j=l 

The most important part of the method of fictitious absorption is the construction of the operator K,,, 
which describes the behaviour of waves in media with strong absorption, or which arise when solving static- 
type problems, since S(0: p) contains no singularities on the real axis and decreases power-wise at inlkrity. 

Without loss of generality we can put f(x, y) = Ae3r’-‘qzy, where rb, q2 are constants, and A = {Al, 
AZ, A3, AdI, and we can suppose that $(x, y) = x,(x, y)A is the solution Kst = f constructed by one of 
the numerous methods for solving problems of statics or for media with strong attenuation (the 
factorization method, asymptotic methods, methods of orthogonal polynomials, etc. [3,4, g-111). Then, 
using the superposition principle it can be shown that the solution of (2.1) Kq = f is the vector function 

qk Y) = xqh y)+ 
i 

-& j,i2 W’ (a, p> - E)X, (a, p)e-i(ar+Py)dadj3 A - 

j j l-l-’ (a, P)LB (a, p)e-i(ar+PY) + 
v2 

+(n:qa, p> _ E)e-i(a(I-4)+B(Y-Yi”dads I c, (4.5) 
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L, (a, PI’ = S-’ 0s B> 
4x2 (4.6) 

Correspondingly 

Q(a, B> = Vq(x, y) = II-‘<% B> &,(a, PM - f,!i L:j(o, @Cv (4.7) ._ 

L~j(a,~)=L~(a,~)-(ll(a.~)-E)ei'q+pyj~, T# +I$ =q2 

Note that L;(a, b) and the integrals in solution (4.9, (4.6) are calculated using the theory of 
residues and the formulae of the operational calculus. 

It follows from (4*.3) that 

p. = V-‘0, y)IT’(a. P)T(a, B> 

In order that the vector function p. should be from Lp and only have a carrier in the region S, by the 
method of fictitious absorption the following relations must be satisfied 

T(fa,,f&,,)=O, ai+fl",=zi, m,k=l,2 ,..., n 

where +zk is a pole of the inverse matrix II-'(a, p), which is the same for all elements of the 
matrix 

As a result we have the following system of algebraic equations for determining the vector C, 

To construct an approximate solution we only need to satisfy the relations for discrete values of 
l3, = km. 

5. THE FINAL SOLUTION OF THE PROBLEM 

The functionals Cr’, Rk, 0: in (2.4) and (2.5) are related to the solution (4.7) of the equation Kq = 
Aemqlxi’12y as follows,: 

‘Q’=Q. A=(l,O,O,Ol, Q2=Q, A=(O, l,O,o) 
Q3=Qv A=lO,O,l,Ol, Q’=Q, A=(O,O,o, 1) 

Q4 =i?$+sQ', Qs =-is _sQ’, 
2 I 

Q6 =-i?!i!+i!Z!$ 
I 

Everywhere here we must put a = p = ql = q2 = 0 intheformulae Q(a, p) = Q(a,j3,ql,q2). 
After determining the functionals, we obtain the displacements of the centre of mass z+(p), the angles 

of rotation of the electrode Cpi(p) and the electric potential vc@) from system (2.4)-(2.5). 
The reaction of the base Q&)9 the moments Z?&) and the stresses qi(X, y, p) in the contact area S, 

the total charge D&) and the electric induction d3(x, y, p) will be given by the expressions 

,f(p)=k~,fk”k+k~4fk~k-3+Wofl~ f =f(qi*Qi*Ri*d~,&) 
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To determine the displacements of points of the medium wj and the potential \y we need to use the 
expression 

w(x, y9 z, PI = + j j Wa, P, z, p)Q(a, p, p)e-““+p~)dcd/3 
w2 

w = Iw,, wz, w3, WI 

Using the method of fictitious absorption these integrals can be reduced to the form 

w(-G y, z, p) = - gl i, ,,~GOIK(a,, PI. z, p)lP.(a,, p,, p)esica~‘+fl/Y) 
h$~O 

For a rectangular contact area we have 

w(x, y, z, p) = - 5 5 Res [K(a,, p,, Z, P)~~,,~~CICi(am(‘-~i)+~~(y-yj)), 
mx~ k1 *ma,~O 

x>a, y>b .= 
Im A a0 

To obtain the final solution in the time t we need to carry out an inverse Laplace transformation. By 
making the replacement p = 40 the corresponding integral can be reduced to a Fourier integral 

F(t)=ia Ref(iw)coswtdo=-i[ Imf(io)sinwrdw (5.1) 

The modified Filon method [9] can be used to evaluate integrals of the form (5.1) 

6. SOLUTION OF THE PLANE PROBLEM 

As an example we will consider the case when the electrode is modelled by a strip-shaped punch of 
width 2~. Without loss of generality we can assume that the centre of mass of the punch coincides with 
the origin of coordinates, i.e. s = 0. The system of integral equations (2.1) in the plane formulation has 
the form 

Kq=f= 

Suppose # are the solutions 

/ 

I 

, 

I 

, q= 
rll 

: 42 
d 

0 

0 3 I k = 1,2,3,4 

1 

For electric boundary conditions of the type 1, v. is a specified function. Taking into account the 
symmetry of the functions, system (2.4) can be written in the form 

S:u, = 4 -qQ:, $4, = P2 - woQ;, R3tp = M - u,Q; 

S; =Q;+tnp’, Q; = i q;(x)&, R3 = 1 q;(x)&+Jp2 
--(t --u 

i= 1,2; k = 1, 2, 3, 4 

(6.1) 

The displacements and angle of rotation are given by the expressions 
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(6.2) 

A, =S,'R3 -tQ:)' 

For electric boundary conditions of type 2 and 3, V&I) is an unknown function. We add Eq. (2.5) to 
Eqs (6.1). ‘Ming into account the evenness of the functions $ we have 

-p(u2D2 + yD4) = I(p), Dk = ; dkd..x, k = 2,4 (6.3) 
--(1 

The solution of system (6.1), (6.3) has the following form: the expressions for u1 and cp are identical 
with those in (6.2), while 

u2 =- 
pD4p2 + IQ; 

A2 
* wo= 

Is:+~D’p2; A 

A2 
2 = -p[D4S; - D’Q;] (6.4) 

The solutions constructed above enable us to investigate coupled electromechanical problems in the 
total volume, taking different factors into account: the mass and moments of inertia of the electrode, 
the coupling in the contact area between the electrode and the underlying medium, and different types 
of unsteady electrical and mechanical actions on the system. We also note that the use of natural forms 
of oscillations of solids of finite dimensions in combination with the proposed approach to solving 
unsteady problems for rigid electrodes enables one to consider the interaction of flexible electrodes 
with multilayered bases with different types of boundary conditions. 

7. NUMERICAL ANALYSIS 

A numerical analysis was carried for a massive strip electrode of width 2a, subjected to the action of a mechanical 
load of the form P(t) = 10, P(t)) applied at the centre of mass (0,O) and for two types of electric action: (a) for 
a specified value of the potential \y = wo, and (b) when a voltage generator with a specified value of the current 
Z(t) is connected to the electrode. 

We will dwell on the results which show the effect of the electroelastic properties of the materials on the behaviour 
of a free electrode (there is no external circuit, i.e. Z(r) = 0), which interacts with a double-layer and triple-layer 
medium. 

In Fig. 1 we show graphs of the vertical displacements, while in Fig. 2 we show graphs of the potential for the 
action of a load of the form P(t) = H(t) - ZZ(f - 0.1) (H(t) is the Heaviside function) on an electrode of unit mass, 
which interacts without friction with a double-layer medium having a thickness H = 2 (Za, = h2 = l/2). The lower 
face of the packet is clamped and metallized. ‘ISTS-19 piezoelectric ceramics [12] is used as the base. The 
piezoelectric coefficient es3 was varied in the lower layer. Curves l-5 correspond to the values ei3 = 0, e&/2, ei3, 
&/2, s3 (curve 3 corresponds to a uniform layer of thickness H - - 2). Since the properties of the upper layer do 
not change, curves l-5 are identical until a wave, reflected from the interface of the media, arrives. An increase 
in the value of the parameter ez3 of the lower layer with respect to the upper layer leads to a reduction in the period 
of natural oscillations of the system after the load is removed. The mechanical “stiffness” of the system increases 

uxld 

Fig. 1. 
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Fig. 2. 

f 2 3 4 t 
Fig. 3. 

as e$s increases. It can be seen from Fig. 2 that as the value of e& of the lower layer increases the amplitude w 
increases and the nature of the variation of the electric field changes. 

In Fig. 3 we show graphs of V/Q) when an electrode of unit mass interacts with a triple-layer medium H = 3 (hr 
= h2 = h3 = l/2), P(t) = H(t) - ZZ(t - 0, l), Z(r) = 0. All the parameters of the layers correspond to those of WTS- 
19 piezoelectric ceramics, with the exception of the coefficient c33r which was varied in the upper and lower layer 
with respect to the value in the middle layer. Curve 1 corresponds to a packet with values c&2, ~33, 3c33n (which 
gradually increased the stiffness with depth), curve 2 corresponds to a uniform layer and curve 3 corresponds to 
the values 3cs3/2, ~33, c33/2 (which gradually reduced the stiffness with depth). It can be seen that the ratio of the 
stiffnesses of two neighbouring layers is decisive in influencing the way the potential changes, while it is the stiffness 
of the upper layer that is decisive for the packet as a whole. The qualitative pattern of the change in the electrode 
displacements with time is similar to the graphs shown in Fig. 3. 

Curve 3 in Fig. 4 corresponds to vertical displacements of a short-circuited electrode (the external electric circuit 
is closed), which is in contact with a layer of PZTSH, the lower face of which is clamped and metallized. Curves 
1,2,4 and 5 show the effect of a change in the parameters e33 and 15~~ (see Table 1) on the amplitude and period 
of oscillations after the load is removed. Fig. 4 illustrates the fact that the effect of the coefficient e3s on the 
displacement of the electrode is less important than the effect of &33. A change in the electromechanical coupling 
coefficient k2 = x/(1 + x), x = e*33/(~33~33) due to a change in the coefficient &33 (curves 1 and 5) leads not only 

Table 1 

Coefficient Curve number 

I 2 3 (PZT5H) 4 5 

2, C/m2 23.3 17,6 23.3 30.3 23.3 
E”, F/m 2.26 1.3 1.3 1.3 0.772 
k 0.412 0.412 0.513 0.612 0,612 
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to considerable changeis in the amplitude, but also to a change in the period of oscillations of the system. A similar 
picture is observed in “weak’ piezoelectrics but in a less pronounced form. 

Figure 5 illustrates the behaviour of a massive punch which is in contact with two different media. Curve 1 
corresponds to PZTSH: piezoelectric ceramics, and curve 2 corresponds to a transversely isotropic medium with 
elastic parameters corresponding to PZTSH. The differences in the nature of the displacements of the punch when 
the medium has no pie:zoelectric properties can be clearly seen. The presence of piezoelectric properties reduces 
the amplitude and increases the period of the system oscillations after the load is removed. In Figs 4 and 5 the 
loadP(t)=&~ls’,m=l,H=%=l,tyO=O. 

Calculations were carried out in dimensionless form for viscoelastic media [12]. In this case w = @e+, and 5 is 
the viscosity parameter of the medium 0 G 2{ G 1 (the elasticity constants are complex quantities of the form 
c. 
$ 

z(). In Figs l-5 5 = 0.2. The displacements are referred to a, the potential is referred to al (1 = 10” and has 
e dimension of electric field), and the time is referred to a/V(Vis the velocity of propagation of transverse waves 

in the upper layer). 
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